Downregulation of claudin-2 expression in renal epithelial cells by metabolic acidosis.
نویسندگان
چکیده
Chronic metabolic acidosis (CMA) is associated with an inhibition of fluid reabsorption in the renal proximal tubule. The effects of CMA on paracellular transport across the renal epithelial tight junction (TJ) is unknown. Claudin-2 is a transmembrane TJ-associated protein which confers TJ paracellular permeability to Na(+). We examined the effects of CMA on the expression of TJ transport proteins using both in vivo and in vitro models of CMA. The results showed downregulation of claudin-2 mRNA and protein expression in the cortex of rats subjected to the NH(4)Cl loading model of CMA. Madin-Darby canine kidney (MDCK) and HK-2 cells are models of renal epithelial cells and express claudin-2 protein in their TJ. We examined the effects of acidic pH exposure on the expression of claudin-2 in MDCK and HK-2 renal epithelial cells. Exposure of MDCK cells to pH 6.96 medium caused a significant and reversible decrease in claudin-2 protein abundance. A dose-response analysis of acidic medium exposure of MDCK and HK-2 cells demonstrated a downregulation of claudin-2 protein. The downregulation effect of acidic pH is specific to claudin-2 expression as the expression of other TJ-associated proteins (i.e., claudin-1, -3, -4, and -7, occludin, and zonula occludens-1) remained unchanged compared with control pH (7.40). Collectively, these data demonstrate that CMA downregulates the expression of claudin-2 likely through a direct effect of acidic pH. Potential physiological significance of these changes is discussed.
منابع مشابه
Shear Stress-Induced Alteration of Epithelial Organization in Human Renal Tubular Cells
Tubular epithelial cells in the kidney are continuously exposed to urinary fluid shear stress (FSS) generated by urine movement and recent in vitro studies suggest that changes of FSS could contribute to kidney injury. However it is unclear whether FSS alters the epithelial characteristics of the renal tubule. Here, we evaluated in vitro and in vivo the influence of FSS on epithelial characteri...
متن کاملExperimentally-Induced Metabolic Acidosis Does not Alter Aortic Fatty Streak Formation in High-Cholesterol Fed Rabbits
Objective(s)Cardiovascular disease causes a major clinical problem in patients with end stage renal disease. Since metabolic acidosis is very common in patients with end stage renal disease, we aimed to investigate the effect of experimentally-induced metabolic acidosis on serum lipid profile and aortic fatty streak (FS) formation in normal and high-cholesterol fed rabbits.Materials and Methods...
متن کاملAcid-base status determines the renal expression of Ca2+ and Mg2+ transport proteins.
Chronic metabolic acidosis results in renal Ca2+ and Mg2+ wasting, whereas chronic metabolic alkalosis is known to exert the reverse effects. It was hypothesized that these adaptations are mediated at least in part by the renal Ca2+ and Mg2+ transport proteins. The aim of this study, therefore, was to determine the effect of systemic acid-base status on renal expression of the epithelial Ca2+ c...
متن کاملOpening Pandora's box in the tight junction.
T he epithelial tight junction (TJ) is one of the epithelial cell–cell junctional complexes and is critical for the maintenance of epithelial cell polarity and control of paracellular transport across epithelial tissues. In many renal physiology and nephrology textbooks, the renal epithelial TJ is simplistically depicted in cartoons as a box between epithelial cells with an arrow going through ...
متن کاملExpression of claudins in human clear cell renal cell carcinoma.
The current study investigated the expression of claudins 1, 5 and 16 in human clear cell renal cell carcinoma (CCRCC) and the impact of claudin-16 on kidney cancer cells. Levels of claudin transcripts were assessed using quantitative reverse transcription-polymerase reaction and proteins were examined by immunohistochemical methods. Human kidney epithelial cell HEK293 and human kidney cancer c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 297 3 شماره
صفحات -
تاریخ انتشار 2009